En este artículo, estudiamos la solubilidad de una clase de ecuaciones diferenciales fraccionarias de Caputo no lineales de múltiples órdenes con condiciones de frontera integrales y antiperiódicas. Utilizando algunos teoremas de punto fijo que incluyen el principio del mapeo de contracción de Banach y el teorema del punto fijo de Schaefer, obtenemos nuevos resultados de existencia y unicidad para nuestro problema dado. Además, presentamos algunos ejemplos para ilustrar nuestros resultados principales.
Esta es una versión de prueba de citación de documentos de la Biblioteca Virtual Pro. Puede contener errores. Lo invitamos a consultar los manuales de citación de las respectivas fuentes.
Artículo:
Soluciones extremas y problemas de relajación para inclusiones diferenciales fraccionarias
Artículo:
Existencia de soluciones positivas para un problema no lineal de valor límite fraccional con no linealidad cambiante y argumentos avanzados.
Artículo:
El Análisis Óptimo de la Probabilidad de Incumplimiento para un Modelo de Riesgo Crediticio
Artículo:
Control óptimo de horizonte infinito de ecuaciones de evolución estocástica con retraso en espacios de Hilbert
Artículo:
Sobre el problema de convergencia de ecuaciones integrales hipersingulares unidimensionales