Se evaluó la interacción de un biomaterial polimérico con medio de cultivo y células osteoblásticas, electrodepositado sobre Ti6Al4V. El compuesto está integrado por ácido poliláctico-ácido poliglicólico-hidroxiapatita, modificado con quitosano y colágeno. Se calculó la permitividad relativa con los datos de impedancia plasmada en un espectro dieléctrico que permitió identificar las dispersiones alfa y beta, relacionadas con el intercambio iónico y la polarización de la membrana celular. La adhesión y proliferación celular se analizaron mediante microscopia de epifluorescencia, en donde fue posible observar al tercer día del cultivo celular el proceso de mitosis representado por la condensación del núcleo y la separación de los cromosomas. Se observó la morfología de la superficie del biomaterial mediante SEM (Scanning Electron Microscope) y AFM (Atomic Force Microscope) y se evaluó la actividad celular mediante la medición de fosfatasa alcalina. Finalmente se encontró la mejor superficie para la adhesión y crecimiento celular mediante análisis estadístico, que correspondió al recubrimiento con la mayor concentración de quitosano y colágeno.
INTRODUCCIÓN
La búsqueda de materiales biocompatibles que pueden ser usados en dispositivos médicos para la reparación de defectos y enfermedades óseas ha aumentado recientemente. Estos materiales deben ser apropiados para que funcionen como soporte de las células regeneradoras de hueso para que puedan proliferar y diferenciarse.
El estudio de propiedades eléctricas en el tejido óseo nació con el descubrimiento del efecto piezoeléctrico en su estructura y de las implicaciones de dicho fenómeno en el proceso de consolidación y tratamiento de patologías óseas [1,2]. Algunos materiales biológicos como el colágeno y biopolímeros exhiben una orientación polar uniaxial de los dipolos en su estructura molecular y pueden ser considerados como bioeléctricos. El colágeno comprende el 90% de la matriz ósea y junto con la hidroxiapatita (HA), gobierna las propiedades biomecánicas y la integridad de este tejido.
La caracterización de la interfase creada entre la superficie del implante y las células llevan a entender los complejos procesos implicados en los mecanismos de interacción para desarrollar superficies que faciliten la incorporación del dispositivo médico. Esta caracterización de la interacción entre células y biomaterial se realiza generalmente mediante medios ópticos y microscópicos, o retirando el biomaterial implantado en un animal. Estudios electroquímicos para medios con células vivas son menos frecuentes y todavía escasos en la literatura.
Esta es una versión de prueba de citación de documentos de la Biblioteca Virtual Pro. Puede contener errores. Lo invitamos a consultar los manuales de citación de las respectivas fuentes.
Artículo:
Estudio sobre el modelo de resorte del suelo para la interacción de tuberías y arcilla limosa basado en el ensayo de modelo físico
Capítulo de libro:
Ensamblaje bioinspirado de nanoplaquetas inorgánicas para nanocompuestos reforzados con polímeros
Artículo:
Copolímeros de metacrilato de 3-sulfopropilo y metacrilato de metilo resistentes a la transpiración y a las incrustaciones para aplicaciones optrónicas en el medio acuático y en la sanidad
Artículo:
El papel de varios polvos durante el proceso de hidratación de materiales a base de cemento
Artículo:
Evolución del daño de la arenisca bajo carga cíclica de amplitud constante basada en los parámetros de emisión acústica y la resistividad
Artículo:
Creación de empresas y estrategia : reflexiones desde el enfoque de recursos
Artículo:
La gestión de las relaciones con los clientes como característica de la alta rentabilidad empresarial
Artículo:
Análisis socioeconómico de la problemática de los desechos plásticos en el mar
Artículo:
Los web services como herramienta generadora de valor en las organizaciones