Se considera una ecuación discreta de orden th con retraso, donde se considera una secuencia positiva para . Se sabe que esta ecuación tiene una solución positiva si la secuencia satisface una desigualdad. Nuestro objetivo es demostrar que, en el caso de la desigualdad opuesta para , todas las soluciones de la ecuación considerada oscilan para .
Esta es una versión de prueba de citación de documentos de la Biblioteca Virtual Pro. Puede contener errores. Lo invitamos a consultar los manuales de citación de las respectivas fuentes.
Artículo:
Efecto de la información previa etiquetada/no etiquetada en la segmentación de los maseteros
Artículo:
Estabilidad generalizada de la ecuación funcional cuadrática de Euler-Lagrange
Artículo:
Las nociones de centro, conmutador e isomorfismo interno para grupoides
Artículo:
Análisis de un Modelo de Epidemia de Heroína con Función de Tratamiento Saturada
Artículo:
Prediciendo los impactos de la pandemia de COVID-19 en las cadenas de suministro de alimentos y su sostenibilidad: Un estudio de simulación.