El uso de la tecnología de juicio inteligente para ayudar en el juicio es una tendencia inevitable en el desarrollo del juicio en los casos legales sociales contemporáneos. El uso de la tecnología de big data e inteligencia artificial para determinar con precisión las múltiples acusaciones involucradas en los casos legales es un problema urgente a resolver en el juicio legal. La clave para resolver estos problemas radica en dos puntos, a saber, (1) la caracterización de los casos legales y (2) la clasificación y predicción de los datos de los casos legales. Los métodos tradicionales de caracterización de entidades se basan en la extracción de rasgos, que a menudo se basan en información de vocabulario y sintaxis. Por lo tanto, la caracterización tradicional de entidades suele requerir mucha energía y tiene poca generalidad, lo que introduce una gran cantidad de cálculos y una limitación a los algoritmos de clasificación posteriores. Este estudio propone un enfoque de juicio inteligente denominado RnRTD, que se basa en la red neuronal recurrente impulsada por relaciones (rdRNN) y la descomposición tensorial restringida (RTD). Representamos los casos legales como tensores y proponemos un método innovador de RTD. La RTD tiene una baja dependencia del vocabulario y la sintaxis y extrae la estructura de características más favorable para mejorar la precisión del algoritmo de clasificación posterior. RTD mapea los tensores, que representan casos legales, en un espacio de características específico y transforma el tensor original en un tensor central y sus correspondientes matrices de factores. Este estudio utiliza rdRNN para actualizar y optimizar continuamente las restricciones en RTD de modo que rdRNN pueda tener el mejor efecto de clasificación de casos legales en el espacio de características objetivo generado por RTD. Simultáneamente, rdRNN establece una nueva puerta y una lista de casos similares para representar la interacción entre los casos legales. En comparación con los métodos tradicionales de extracción de características, nuestro método de RTD propuesto es menos costoso y más universal en la caracterización de casos legales. Además, la rdRNN con una capa de RTD tiene un mejor efecto que la red neuronal recurrente (RNN) sólo en la clasificación y predicción de acusaciones múltiples en casos legales. Los experimentos muestran que, en comparación con los enfoques anteriores, nuestro método logra una mayor precisión en la clasificación y predicción de las acusaciones múltiples en los casos legales, y nuestro algoritmo es más interpretable.
Esta es una versión de prueba de citación de documentos de la Biblioteca Virtual Pro. Puede contener errores. Lo invitamos a consultar los manuales de citación de las respectivas fuentes.
Artículos:
Materiales para futuras memorias basadas en puntos cuánticos
Artículos:
Efecto de los métodos de extracción en la actividad antioxidante de extractos de piel de cebolla Maja Cipanas y fracciones de cebolla (L. var.).
Artículos:
Biogénesis y actividad biológica de los siARN secundarios en plantas
Artículos:
Visibilidad de los frentes de penacho fluvial con un radar de banda X
Artículos:
Células solares de TiO2 mesoporoso sensibilizadas con puntos cuánticos de CdSe y CuSCN como electrolito de estado sólido
Artículos:
Comportamiento del aguacate Hass liofilizado durante la operación de rehidratación
Artículos:
Caracterización estructural de la materia orgánica de tres suelos provenientes del municipio de Aquitania-Boyacá, Colombia
Informes y Reportes:
Técnicas de recuperación de suelos contaminados
Artículos:
Una revisión de la etiopatogenia y características clínicas e histopatológicas del melanoma mucoso oral.