La SVM de aproximación por mínimos cuadrados hacia delante (FLSA) es una SVM de mínimos cuadrados (LS-SVM) de reciente aparición cuya solución es extremadamente dispersa. El algoritmo utiliza el número de vectores de soporte como parámetro de regularización y garantiza la independencia lineal de los vectores de soporte que abarcan la solución. En este trabajo se propone una variante del FLSA-SVM, el FLSA-SVM reducido, que reduce la complejidad computacional y los requisitos de memoria. Se introduce la estrategia de "herencia de contextos" para mejorar la eficiencia del ajuste del parámetro de regularización tanto para el algoritmo FLSA-SVM como para el RFLSA-SVM. Los resultados experimentales sobre conjuntos de datos de referencia mostraron que, en comparación con la SVM y varias de sus variantes, las soluciones RFLSA-SVM contienen un número reducido de vectores de soporte, al tiempo que mantienen una capacidad de generalización competitiva. Con respecto al coste de tiempo para ajustar el parámetro de regularización, el algoritmo RFLSA-SVM demostró empíricamente ser el más rápido en comparación con los algoritmos FLSA-SVM, LS-SVM y SVM.
Esta es una versión de prueba de citación de documentos de la Biblioteca Virtual Pro. Puede contener errores. Lo invitamos a consultar los manuales de citación de las respectivas fuentes.
Artículo:
Un método adaptativo basado en PCA y ELM para la ecualización de canales en la inspección MFL
Artículo:
Desigualdades integrales afiladas basadas en una fórmula de cuadratura de cuatro puntos general a través de una generalización de la identidad de Montgomery.
Artículo:
Modelización e investigación de la bifurcación de un sistema dinámico de propagación de gusanos con retardo temporal
Artículo:
Una técnica de transmisión de datos para sistemas sanitarios personales
Artículo:
Propiedades Topológicas y Funcionales de Algunas -Álgebras de Funciones Holomorfas