La aplicación de la detección de buques para ayudar a la navegación inteligente tiene requisitos estrictos en cuanto a la velocidad y la precisión de detección del modelo. En respuesta a este problema, este estudio utiliza un modelo de detección YOLO-V4 mejorado (ShipYOLO) para detectar buques. En comparación con YOLO-V4, el modelo presenta tres mejoras principales. En primer lugar, se optimiza la red troncal (CSPDarknet) de YOLO-V4. En el proceso de entrenamiento, la convolución 3 × 3, la convolución 1 × 1 y el modo paralelo de identidad se utilizan para sustituir al componente original de extracción de características (ResUnit) y se extraen más características. En el proceso de inferencia, los parámetros de la rama se combinan para formar una nueva red troncal denominada RCSPDarknet, que mejora la velocidad de inferencia del modelo al tiempo que mejora la precisión. En segundo lugar, para resolver el problema de la falta de detección de los barcos pequeños, diseñamos un nuevo módulo de campo receptivo amplificado denominado DSPP con convolución dilatada y Max-Pooling, que mejora la adquisición por parte del modelo de información espacial de los barcos pequeños y la solidez del desplazamiento del espacio objetivo de los barcos. Por último, utilizamos el mecanismo de atención y la idea de atajo de Resnet para mejorar la estructura piramidal de características (PAFPN) de YOLO-V4 y obtener una nueva estructura piramidal de características denominada AtFPN. La estructura mejora eficazmente el efecto de extracción de características del modelo para buques de diferentes escalas y reduce el número de parámetros del modelo, mejorando aún más la velocidad de inferencia y la precisión de detección del modelo. Además, hemos creado un conjunto de datos de buques con un total de 2238 imágenes, que es un conjunto de datos de una sola categoría. Los resultados experimentales demuestran que ShipYOLO tiene la ventaja de ser más rápido y preciso incluso con diferentes tamaños de entrada. Considerando el tamaño de entrada de 320 × 320 en el PC equipado con GPU NVIDIA 1080Ti, los FPS y mAP@5 :5:95 (mAP90) de ShipYOLO aumentan un 23,7
y 13,6% (10,6%), respectivamente, con un tamaño de entrada de 320 × 320, ShipYOLO, en comparación con YOLO-V4.
Esta es una versión de prueba de citación de documentos de la Biblioteca Virtual Pro. Puede contener errores. Lo invitamos a consultar los manuales de citación de las respectivas fuentes.
Artículo:
Logística colaborativa sostenible utilizando algoritmos de planificación especializados y un modelo de negocio de participación en las ganancias: un estudio de caso del Reino Unido
Artículo:
Calibración de modelos microscópicos de simulación del flujo de tráfico considerando subconjuntos de enlaces y parámetros
Video:
Optimización multiescalón de inventarios de cadena de suministro
Artículo:
¿Cuál es el efecto de las licencias de remanufactura sobre la cadena de suministro respecto a la conciencia ambiental del consumidor?
Artículo:
Alianza estratégica para la resiliencia de la cadena de suministro: análisis bibliométrico