Investigamos una clase de ecuaciones integrales funcionales de orden fraccionario dadas por x(t)=q(t) f1(t,x(α1(t)),x(α2(t))) (f2(t,x(β1(t)),x(β2(t)))/Γ(α))×∫0t(t-s)α-1f3(t,s,x(γ1(s)), x(γ2(s)))ds: se derivan condiciones suficientes para la existencia, la atractividad global y la positividad final de las soluciones de las ecuaciones. Las herramientas principales incluyen las técnicas de medidas de no compacidad y un reciente teorema de punto fijo de Dhage. Nuestras investigaciones se sitúan en el espacio de Banach de funciones continuas y acotadas de valor real definidas en intervalos no acotados. Además, se dan dos ejemplos para ilustrar nuestros resultados.
Esta es una versión de prueba de citación de documentos de la Biblioteca Virtual Pro. Puede contener errores. Lo invitamos a consultar los manuales de citación de las respectivas fuentes.
Artículo:
Sobre los anillos conmutativos con a lo sumo dos subanillos propios.
Artículo:
Diseño de elementos de sujeción de botellas de bacterias basado en modelos de regresión.
Artículo:
Optimización de la programación de paradas de trenes de alta velocidad en función de la comodidad de los pasajeros
Artículo:
Decaimiento Exponencial para un Sistema de Ecuaciones con Retardos Distribuidos
Artículo:
Sobre problemas de Fekete-Szegö para ciertas subclases de funciones analíticas definidas por un operador diferencial que involucra al operador -Ruscheweyh.