La relación entre las álgebras JW (respectivamente, JC) y sus álgebras de von Neumann envolventes universales (respectivamente, -álgebras) puede describirse como significativa e influyente. Se han establecido numerosos ejemplos de relaciones. En este artículo, establecimos una relación entre el conjunto de caras divididas del espacio de estados (respectivamente, estados normales) de una JC-álgebra (respectivamente, una JW-álgebra) y el conjunto de caras divididas del espacio de estados (respectivamente, estados normales) de su -álgebra de von Neumann envolvente universal (respectivamente, álgebra de von Neumann), y vinculamos esta relación con la correspondencia entre las clases de caras invariantes, ideales cerrados y proyecciones centrales de estas álgebras de Jordan y de sus álgebras de von Neumann envolventes.
Esta es una versión de prueba de citación de documentos de la Biblioteca Virtual Pro. Puede contener errores. Lo invitamos a consultar los manuales de citación de las respectivas fuentes.
Artículos:
Algunas interacciones entre extensiones de Hopf Galois y anillos no conmutativos
Artículos:
Nuevo Estimador Liu Restringido en un Modelo Parcialmente Lineal
Artículos:
Algoritmo de mínimos cuadrados de eficiencia computacional mejorada con aplicación al diseño de filtros todo paso
Artículos:
Control de retroalimentación de salida basado en observadores difusos para sistemas estocásticos no lineales con ruido multiplicativo
Artículos:
Estabilización de Sistemas de Salto Markovianos de Tiempo Discreto mediante Controladores con Caracterización Parcialmente Dependiente del Modo
Artículos:
Comportamiento del aguacate Hass liofilizado durante la operación de rehidratación
Artículos:
Caracterización estructural de la materia orgánica de tres suelos provenientes del municipio de Aquitania-Boyacá, Colombia
Informes y Reportes:
Técnicas de recuperación de suelos contaminados
Artículos:
Una revisión de la etiopatogenia y características clínicas e histopatológicas del melanoma mucoso oral.