Este artículo trata sobre la existencia de soluciones cuasiperiódicas con dos frecuencias de ecuaciones de ondas no lineales completamente resonantes y cuasiperiódicamente forzadas, sujetas a condiciones de contorno espaciales periódicas. Las soluciones resultan ser, en primer orden, la superposición de ondas viajeras, viajando en direcciones opuestas o en la misma dirección. Las demostraciones se basan en la reducción variacional de Lyapunov-Schmidt y el teorema de enlace, mientras que las ecuaciones de bifurcación se resuelven mediante métodos variacionales.
Esta es una versión de prueba de citación de documentos de la Biblioteca Virtual Pro. Puede contener errores. Lo invitamos a consultar los manuales de citación de las respectivas fuentes.
Artículo:
Sobre una caracterización de la convergencia en espacios de Banach con una base de Schauder
Artículo:
Ondas viajeras para redes celulares neuronales retardadas con funciones de salida no monótonas.
Artículo:
Propiedades de poder de la vista humana y comportamiento de respuesta en la sociedad en línea
Artículo:
Propiedades de ciertas clases de funciones holomorfas relacionadas con la función de tipo Strongly Janowski.
Artículo:
Existencia y Atractividad para Ecuaciones de Evolución Fraccionarias