Nosotros estudiamos la reacción de transferencia de protón bis-alílico del 1,4-pentadieno al radical anión superóxido (O2). Las geometrías de los mínimos y de los estados de transición, así como también los parámetros termoquímicos se calcularon usando el nivel de teoría B3LYP/6-311+G(3df,2p). Las funciones de onda electrónicas de los reactantes, intermedios y productos se analizaron dentro del marco de la teoría cuántica de átomos en moléculas. Las funciones de onda electrónicas de los reactantes, intermedios y productos se analizaron dentro del marco de la teoría cuántica de átomos en moléculas. Nuestros resultados muestran la formación de complejos estabilizados por enlaces de hidrógeno entre el anión 1,4pentadien3-ilo y el radical hidroperoxilo como productos de reacción. Estos complejos producto (PCs) son más estables que los reactantes aislados y mucho más estables que los productos aislados. Esta reacción ocurre vía la formación de complejos pre-reactivos, los cuales son más estables que los PCs y los estados de transición. Estos resultados están de acuerdo con el hecho de que la reacción global de transferencia de protón que conduce a la formación de los productos libres es un proceso endotérmico y no espontáneo.
INTRODUCCIÓN
El anión radical superóxido es el producto de la reducción de un electrón del oxígeno molecular y desempeña importantes funciones en la química atmosférica (1-2), en la fotoquímica (3) y en muchos procesos bioquímicos (4-5). Se sabe que la generación del anión radical superóxido es un proceso clave en la descomposición del ozono en las gotas de agua de las nubes y está implicada en la regulación de los procesos generales de oxidación de la troposfera (6). Además, en las células vivas el anión radical superóxido es un subproducto de la cadena respiratoria mitocondrial, donde suele generarse en procesos que implican a las oxidasas NADPH, (7) al transporte de electrones mitocondrial, (8) y a las reacciones del citocromo P-450 (9). Se cree que es importante en la teoría radical del envejecimiento (10).
La química establecida del anión radical superóxido no lo define como un oxidante biológico fuerte. Sin embargo, puede considerarse como una fuente de otras especies reactivas de oxígeno (ROS, es decir, H2O2, HO•, HO-, HOO•, 1O2) que pueden causar potencialmente daños celulares. La desproporción del anión radical superóxido por la superóxido dismutasa (SOD) produce peróxido de hidrógeno y oxígeno molecular. La descomposición del peróxido de hidrógeno a través de las reacciones de Fenton y Haber-Weiss puede producir radicales hidroxilo altamente reactivos. La protonación del anión radical superóxido conduce a la formación de su ácido conjugado, el radical hidroperoxilo, ecuación [1] (11).
Esta es una versión de prueba de citación de documentos de la Biblioteca Virtual Pro. Puede contener errores. Lo invitamos a consultar los manuales de citación de las respectivas fuentes.
Artículo:
Efectos de los grupos funcionales de triple enlace que contienen moléculas sobre la electrodeposición de níquel
Artículo:
Reacciones Henry y Michael sin disolventes con nitroalcanos promovidas por carbonato potásico como catalizador heterogéneo versátil
Artículo:
Study on Three Sarcocapnos Species as Potential Sources of Bioactive Compounds: Relación entre contenido fenólico y bioactividad mediante análisis multivariante
Artículo:
Decoloración del colorante rojo reactivo 120 mediante nanotubos de carbono de pared simple en soluciones acuosas
Artículo:
Determinación espectrofotométrica de mesilato de gemifloxacino, clorhidrato de moxifloxacino y enrofloxacino en formulaciones farmacéuticas mediante colorantes ácidos
Artículo:
Creación de empresas y estrategia : reflexiones desde el enfoque de recursos
Libro:
Ergonomía en los sistemas de trabajo
Artículo:
La gestión de las relaciones con los clientes como característica de la alta rentabilidad empresarial
Artículo:
Los web services como herramienta generadora de valor en las organizaciones