Biblioteca122.739 documentos en línea

Artículos

Coordinate Transformation between Global and Local Datums Based on Artificial Neural Network with K-Fold Cross-Validation: A Case Study, GhanaTransformación coordinada entre información global y local basada en Redes Neuronales Artificiales con validación cruzada de k-iteraciones en Ghana

Resumen

La popularidad de la metodología de Redes Neuronales Artificiales está en crecimiento en varias áreas en geodesia y en las ciencias geoespaciales. Su capacidad de realizar una transformación coordinada entre diferente información ha sido bien documentada en la literatura. En la aplicación de métodos de Redes Neuronales Artificiales para la transformación coordinada solo se ha evaluado el desempeño del enfoque de prueba de adiestramiento (validación cruzada por método de retención). En este punto, la información se divide en dos subconjuntos diferentes: adiestramiento (modelo de construcción) y verificación (modelo de validación). Sin embargo, una desventaja en el procedimiento de validación cruzada por método de retención es inapropiada durante la división de información. Una partición no adecuada en la información podría llevar a una gran diferencia o a un sesgo en los resultados generados. Además, ante una situación de un conjunto de datos disperso la validación cruzada por método de retención no es adecuada. Por estas razones se recomienda la validación cruzada de k-iteraciones. Por consiguiente, este estudio, por primera vez, explora el potencial de usar el método por validación cruzada de k-iteraciones en la evaluación de ejecución de la función de base radial en redes neuronales y el modelo Bursa-Wolf en una situación de información insuficiente en la red de referencia geodética de Ghana. El análisis estadístico de los resultados muestra que una partición incorrecta de información puede llevar a un registro falso en la ejecución predictiva del modelo de transformación. Los resultados demuestran que la función radial y el modelo Bursa-Wolf producen un error posicional de media cuadrática horizontal de 0.797 m y 1.182 m, respectivamente. Los resultados del modelo radial por la medición cadastral concuerdan con los requerimientos del plan de producción instaurados por la divisón de mapeo del servicio geológico de Ghana. Este estudio contribuirá en la usabilidad del método de validación cruzada de k-iteracciones en países en desarrollo que tienen conjuntos de datos dispersos, como Ghana, y en las ciencias geodésicas donde los usuarios de redes neuronales casi nunca aplican la técnica estadística de remuestreo.

INTRODUCCIÓN

La información sobre la posición de los elementos naturales y artificiales se muestra en los mapas en forma de coordenadas. Por ello, las coordenadas se han convertido en un medio representativo indispensable para cartografiar con precisión los recursos naturales.

  • Tipo de documento:
  • Formato:pdf
  • Idioma:Inglés
  • Tamaño:2713 Kb

Cómo citar el documento

Esta es una versión de prueba de citación de documentos de la Biblioteca Virtual Pro. Puede contener errores. Lo invitamos a consultar los manuales de citación de las respectivas fuentes.

Este contenido no est� disponible para su tipo de suscripci�n

Información del documento

  • Titulo:Coordinate Transformation between Global and Local Datums Based on Artificial Neural Network with K-Fold Cross-Validation: A Case Study, Ghana
  • Autor:Laari, Prosper Basommi; Tierra, Alfonso Rodrigo; Youjian, Hu; Ziggah, Yao Yevenyo
  • Tipo:Artículos
  • Año:2019
  • Idioma:Inglés
  • Editor:Universidad Nacional de Colombia
  • Materias:Redes neuronales (Computadores) Geodesia Estadística
  • Descarga:3