Con la hipótesis de que la jerarquía social de los lobos grises también se seguiría en sus posiciones de búsqueda, se propone un algoritmo mejorado de optimización del lobo gris (GWO) con pesos variables (VW-GWO). Y para reducir la probabilidad de quedar atrapado en óptimos locales, se propone también una nueva ecuación de gobierno del parámetro de control. Se realizan experimentos de simulación y se hacen comparaciones. Los resultados muestran que el algoritmo VW-GWO propuesto funciona mejor que el GWO estándar, el algoritmo de optimización de hormigas y leones (ALO), el algoritmo de optimización de enjambre de partículas (PSO) y el algoritmo de murciélagos (BA). El novedoso algoritmo VW-GWO también se verifica en problemas de alta dimensión.
Esta es una versión de prueba de citación de documentos de la Biblioteca Virtual Pro. Puede contener errores. Lo invitamos a consultar los manuales de citación de las respectivas fuentes.
Artículo:
Midkine en la Inflamación
Artículo:
Estimación de la Presión Arterial Utilizando Sólo Fotopletismografía: Comparación entre diferentes enfoques de aprendizaje automático
Artículo:
Explorando el Potencial Antibacteriano de Platymiscium pinnatum
Artículo:
Efecto del tamaño de las partículas en la actividad HDS del sulfuro de molibdeno
Artículo:
Asignación de prioridades para la programación de umbral de prelación de prioridad fija.
Artículo:
Creación de empresas y estrategia : reflexiones desde el enfoque de recursos
Artículo:
La gestión de las relaciones con los clientes como característica de la alta rentabilidad empresarial
Artículo:
Análisis socioeconómico de la problemática de los desechos plásticos en el mar
Artículo:
Los web services como herramienta generadora de valor en las organizaciones