Los métodos tradicionales no pueden utilizarse para cumplir los requisitos de detección rápida y objetiva de la frescura de la carne. La nariz electrónica (E-Nose), la visión por ordenador (CV) y las tecnologías sensoriales táctiles artificiales (AT) pueden utilizarse para imitar las funciones sensoriales compresivas del olfato, la vista y el tacto del ser humano a la hora de juzgar la calidad (frescura) de la carne. Aunque se han utilizado tecnologías sensoriales individuales E-Nose, CV y AT para detectar la frescura de la carne, los resultados de la detección varían y no son fiables. En este trabajo, se ha propuesto un nuevo método a través de la integración de las tecnologías sensoriales E-Nose, CV, y AT para capturar parámetros completos de frescura de la carne y el método de fusión de datos para analizar los datos complicados con diferentes dimensiones y unidades de seis parámetros de olor de E-Nose, 9 parámetros de color de CV, y 4 parámetros gomosos de AT para la detección eficaz de la frescura de la carne. Se han seleccionado las carnes de cerdo y pollo para una prueba de validación. Los ensayos de nitrógeno base volátil total (TVB-N) se utilizan para definir la frescura de la carne como criterio estándar para validar la eficacia del método propuesto. El análisis de componentes principales (ACP) y la máquina de vectores de apoyo (MVS) se utilizan como métodos de reconocimiento de patrones no supervisados y supervisados para analizar los datos de origen y los datos de fusión de los tres instrumentos, respectivamente. Los resultados experimentales y del análisis de datos muestran que, en comparación con una sola tecnología, la fusión de las tecnologías E-Nose, CV y AT mejora significativamente el rendimiento de la detección de diversos productos cárnicos frescos. Además, se utilizan mínimos cuadrados parciales (PLS) para construir modelos de predicción del valor TVB-N, en los que se introducen los datos de fusión. Las predicciones de error cuadrático medio (RMSEP) para las muestras de carne de cerdo y pollo son de 1,21 y 0,98, respectivamente, en las que el coeficiente de determinación (R2) es de 0,91 y 0,94. Esto significa que el método propuesto puede utilizarse para detectar eficazmente la frescura de la carne y el tiempo de almacenamiento (días).
Esta es una versión de prueba de citación de documentos de la Biblioteca Virtual Pro. Puede contener errores. Lo invitamos a consultar los manuales de citación de las respectivas fuentes.
Artículo:
NeuroModulación Eléctrica Transcutánea Peroneal (eTNM®): Un método novedoso para el tratamiento de la vejiga hiperactiva
Artículo:
Ajuste de la fotoluminiscencia y las propiedades antibacterianas de nanopartículas de ZnO mediante dopaje con Sr para aplicaciones biomédicas
Artículo:
Aumento del límite de solubilidad del aluminio tetraédrico en nanorods de ZnO:Al mediante la variación de los parámetros de síntesis
Artículo:
Medición robótica por ultrasonidos de la tensión residual en componentes de superficies curvas complejas
Artículo:
Dinámica de curado de adhesivos a base de harina de soja mejorados con poliuretano al agua