La tecnología de aprendizaje automático impulsa muchos aspectos de la sociedad moderna. En comparación con las técnicas convencionales de aprendizaje automático, que se limitaban a procesar datos naturales en bruto, el aprendizaje profundo permite a los modelos informáticos aprender representaciones de datos con múltiples niveles de abstracción. En este estudio, se propone un modelo mejorado de aprendizaje profundo para explorar las complejas interacciones entre las carreteras, el tráfico, los elementos ambientales y los accidentes de tráfico. El modelo propuesto incluye dos módulos, un módulo de aprendizaje de características no supervisado para identificar la red funcional entre las variables explicativas y las representaciones de características y un módulo de ajuste fino supervisado para realizar la predicción de accidentes de tráfico. Para abordar los problemas de heterogeneidad no observada en la predicción de accidentes de tráfico, se incorpora un modelo binomial negativo multivariante (MVNB) en el módulo de ajuste fino supervisado como capa de regresión. El modelo propuesto se aplicó al conjunto de datos del condado de Knox, en Tennessee, para validar su rendimiento. Los resultados indican que el módulo de aprendizaje de características identifica información relacional entre las variables explicativas y las representaciones de características, lo que reduce la dimensionalidad de la entrada y preserva la información original. El modelo propuesto que incluye la capa de regresión MVNB en el módulo de ajuste fino supervisado puede tener más en cuenta los patrones de distribución diferencial en los accidentes de tráfico en función de la gravedad de las lesiones y proporciona predicciones superiores de accidentes de tráfico. Los resultados sugieren que el modelo propuesto es una alternativa superior para las predicciones de accidentes de tráfico y la precisión media de la predicción medida por RMSD puede mejorarse en 84,58
y 158,27 en comparación con el modelo de aprendizaje profundo sin la capa de regresión y el modelo SVM, respectivamente.
Esta es una versión de prueba de citación de documentos de la Biblioteca Virtual Pro. Puede contener errores. Lo invitamos a consultar los manuales de citación de las respectivas fuentes.
Artículo:
Metodología basada en datos de alta velocidad para predicciones del flujo de tráfico en tiempo real: Aplicaciones prácticas de los STI
Artículo:
Investigación sobre el control dinámico de la prioridad del carril HOV en un entorno de vehículo conectado
Artículo:
Estrategia dinámica bajo incertidumbre para recolección y coordinación de la cadena de suministro de ciclo cerrado en industria de remanufactura.
Artículo:
Análisis del comportamiento de elección de ruta basado en la distancia de viaje heterogénea utilizando datos reales de trayectorias de taxis a gran escala
Artículo:
Exploración de los patrones de distribución y variabilidad del tiempo de viaje mediante datos de vehículos sonda: Estudio de un caso en Pekín
Artículo:
Creación de empresas y estrategia : reflexiones desde el enfoque de recursos
Artículo:
Los web services como herramienta generadora de valor en las organizaciones
Artículo:
La gestión de las relaciones con los clientes como característica de la alta rentabilidad empresarial
Libro:
Ergonomía en los sistemas de trabajo