Objetivo: Este artículo propone una nueva metodología para solucionar ecuaciones integrales conformadas con núcleos diferenciales de una dimensión usando el análisis de Fourier. Metodología: En este estudio, se ha probado que cualquier ecuación de Fredholm de primera clase puede ser expresado como un problema convolucional extendido; consecuentemente, un nuevo enfoque para solucionar ese problema, usando la teoría de muestreo instantánea no ideal y el análisis de Fourier, puede ser desarrollado. Resultados y discusión: La propuesta fue extensivamente evaluada y comparada con el Método de los Momentos usando dos benchmarks. El primero fue un problema de banda angosta relacionado con una ecuación diferencial de segundo orden con fronteras específicas. El segundo fue un problema estándar de banda ancha relacionada con la radiación de una antena de alambre en electrodinámica, denominado la Ecuación de Pocklington. En ambos casos, nuevas interpretaciones y diferentes enfoques fueron encontrados con el objeto de solucionar eficientemente los problemas. Conclusiones: La nueva propuesta generaliza el Método de los Momentos con nuevas interpretaciones, estrategias y reglas de diseño. Nosotros encontramos que las técnicas basadas en el método de los momentos son procedimientos de acople de puntos que independiente de las funciones de peso, las funciones base pueden ser diseñadas como funciones de interpolación generalizadas con más información provista por el dominio original; las funciones de peso literalmente representan a un filtro lineal muestreado; las funciones continuas desconocidas pueden ser aproximadas sin usar el enfoque variacional clásico; y varias nuevas estrategias basadas en la transformada de Fourier poder ser usadas para reducir el costo computacional.
INTRODUCCIÓN
Las ecuaciones integrales (EI) permiten modelar un gran número de problemas complejos en diversas áreas de la ingeniería y la física, como la transferencia de calor y masa, la teoría de las oscilaciones y los campos electromagnéticos. Una EI es una ecuación en la que se necesita encontrar una función desconocida 𝑔(∙) relacionada con una integral bajo una excitación conocida ƒ(∙). Algunos ejemplos incluyen IEs unidimensionales con formas ∃𝑔(∙): ∫𝑏𝑎 𝐾(𝑥, 𝑢)𝑔(𝑢)𝑑𝑢 = ƒ(𝑥) y ∃𝑔(∙): ∫𝑥𝑎 𝐾(𝑥, 𝑢)𝑔(𝑢)𝑑𝑢 = ƒ(𝑥), que se conocen, respectivamente, como las ecuaciones de Fredholm y de Volterra del primer tipo, en las que 𝐾(𝑥, 𝑢) se suele conocer como el núcleo.
A lo largo de los años se han desarrollado varias técnicas para resolver este tipo de problemas utilizando enfoques exactos, asintóticos y numéricos. En [1]-[3] se puede encontrar un resumen exhaustivo de estas técnicas para diferentes problemas.
Esta es una versión de prueba de citación de documentos de la Biblioteca Virtual Pro. Puede contener errores. Lo invitamos a consultar los manuales de citación de las respectivas fuentes.
Artículo:
Efectos de los óxidos metálicos en la carbonatación y coquización de aguas residuales orgánicas de alta salinidad
Artículo:
Una antena de parche Microstrip de banda ancha en forma de mariposa para la comunicación inalámbrica
Artículo:
Una antena MIMO de bajo perfil y doble polarización con una superficie AMC para aplicaciones WLAN
Artículo:
Diseño óptimo de nuevos filtros de horquilla multicapa UWB con supresión de armónicos y adaptación de impedancias
Artículo:
Efecto DIBL anómalo en MOSFETs SOI completamente agotados utilizando un proceso de canal empotrado en la compuerta a escala nanométrica.