Se investiga un problema inverso para una ecuación de evolución estocástica lineal. La ecuación de evolución estocástica contiene un parámetro con valores en un espacio de Hilbert. La solución de la ecuación de evolución depende continuamente del parámetro y es Fréchet diferenciable con respecto al parámetro. Se proporciona un método de optimización para estimar el parámetro. Se presenta una condición suficiente para garantizar la existencia de un parámetro óptimo, y también se presenta una condición necesaria que el parámetro óptimo, si existe, debe cumplir. Finalmente, se dan dos ejemplos para mostrar las aplicaciones de los resultados anteriores.
Esta es una versión de prueba de citación de documentos de la Biblioteca Virtual Pro. Puede contener errores. Lo invitamos a consultar los manuales de citación de las respectivas fuentes.
Artículo:
Optimización multidisciplinar de la topología de estructuras de placa/concha rigidizadas inspiradas en los mecanismos de crecimiento de las venas de las hojas en la naturaleza
Artículo:
Sistemas dinámicos globales que involucran operadores de proyección generalizados y perturbaciones de conjuntos en espacios de Banach.
Artículo:
TDMA dinámico cognitivo autoorganizado para el control de acceso al medio en comunicaciones vehículo-vehículo en tiempo real
Artículo:
Criterios de oscilación de intervalo para ecuaciones dinámicas de segundo orden con no linealidades dadas por integrales de Riemann-Stieltjes
Artículo:
Analizador de Decisiones Neuronales de Exclusión-Media-Varianza para la Toma de Decisiones en Grupo Cualitativas
Artículo:
Creación de empresas y estrategia : reflexiones desde el enfoque de recursos
Artículo:
Los web services como herramienta generadora de valor en las organizaciones
Artículo:
La gestión de las relaciones con los clientes como característica de la alta rentabilidad empresarial
Libro:
Ergonomía en los sistemas de trabajo