Estructura Electrónica de GaAs y AlAs usando un Hamiltoniano Tight-Binding sp3 s ∗
Electronic Structure of GaAs and AlAs using a Hamiltonian Tight-Binding sp3 s ∗
Calculamos los estados electrónicos en volumen para GaAs y AlAs en estructura Zinc-Blenda usando el método Tight-Binding(TB). El Hamiltoniano TB se construyó usando una base de orbitales s, p y s∗s^∗s∗. Los orbitales s∗s^∗s∗ representan estados excitados conigual simetría de los orbitales s. Llevando a cabo la diagonalización numérica del Hamiltoniano, se determinaron las relaciones de dispersión para algunas direcciones de alta simetría de la primera zona de Brillouin (PZB), obteniendo un gap directo de 1.54 eV para GaAs y un gap indirecto de 2.26 eV para AlAs. Las densidades de estados totales (DOS) y parciales indican la presencia de orbitales s en la parte inferior de la banda de valencia (BV), orbitales p en la parte superior de la BV y en la parte inferior de la banda de conducción (BC), y orbitales s∗s^∗s∗ en la parte superior de la BC. Nuestros resultados concuerdan bastante bien con otros reportes experimentales y teóricos.
1 INTRODUCCIÓN
Los compuestos GaAs y AlAs se utilizan en la actualidad para fabricar dispositivos tales como circuitos integrados a frecuencias de emisión infrarroja, diodos y celdas fotovoltaicas. Además, se utilizan en la producción de láseres de baja potencia con aplicación en medicina, especialmente en odontología.
Se han reportado algunos estudios teóricos, usando la teoría del funcional densidad (DFT), sobre las propiedades estructurales, transiciones de fase estructurales y propiedades electrónicas [1, 2, 3,4]. También se pueden encontrar en la literatura trabajos experimentales sobre la determinación de los gaps de energías prohibidas [5, 6, 7, 8, 9].
El cálculo de estructura electrónica usando esquemas Tight-Binding (TB) con menos de ocho bandas no describe adecuadamente semiconductores con enlace covalente. Por ejemplo, en cristales tipo diamante y Zinc-Blenda (ZB), con enlace sp3, es necesario al menos cuatro orbitales para cada átomo: un orbital s y tres p, que originarían una matriz Hamiltoniana 8 x 8 [10, 11, 12, 13]. Este modelo suministra un esquema simple para describir bandas de valencia (BV).
Los intentos de describir las bandas de conducción (BC), en semiconductores, con esquemas TB sp3 a primeros vecinos más cercanos han fallado; por ejemplo, Chadi et al. [14] mostró que con la base sp3 no se obtienen los gaps indirectos en semiconductores tipo diamante y ZB como Si, Ge, AlAs o GaP. La causa principal de esta falla es que se omite el uso de estados excitados, tales como los d. Sin embargo, un esquema TB sp3d5 para semiconductores diamante o ZB implicaría usar una base de nueve orbitales por átomo: un orbital s, tres p y cinco orbitales d y por tanto, una matriz Hamiltoniana 18 x 18.
Recursos
-
Formatopdf
-
Idioma:español
-
Tamaño:679 kb