Aplicación de un algoritmo ACO al problema de flowshop flexible con tiempos de preparación dependientes de la secuencia y minimización de la tardanza total
An ant colony algorithm for scheduling flexible flowshop with sequence dependent setup times and total tardiness minimization
Este estudio considera el problema de flowshop flexible con tiempos de setup anticipatorios dependientes de la secuencia y minimización de la tardanza total. Se propone un algoritmo de optimización de colonia de hormigas ACS (Ant Colony System), hibridizado con una búsqueda en vecindad de intercambio de pares, evaluado en un conjunto de problemas de prueba generados en estudios anteriores. Los resultados se comparan con otros métodos de solución, presentando el algoritmo propuesto mejores resultados.
INTRODUCCIÓN
En los últimos años la programación de la producción ha tomado especial atención por quienes administran los procesos productivos. Lo anterior se debe principalmente al alto interés que existe por el aumento de la productividad y al alto nivel competitivo observado entre las empresas de un mismo rubro, las que se basan en estudios realizados con fines académicos para dar solución a los problemas que surgen en la gestión de la producción. Idealmente, buenos métodos de programación de producción deben ser simples, claros, fáciles de comprender, fáciles de llevar a cabo, flexibles y realistas. De acuerdo con lo anterior, el objetivo de la programación de producción es optimizar la utilización de los recursos de forma que se cumpla con los objetivos de producción [1].
La cantidad de máquinas disponibles para realizar las operaciones de un trabajo y su disposición en el sistema productivo determinan el tipo de configuración productiva que mejor se ajusta a las necesidades de producción.
El flowshop flexible (FFS) también conocido como flowshop híbrido (HFS) o flowshop con múltiples procesadores (FSMP) [2], es un tipo de configuración que se encuentra en todo tipo de ambientes productivos del mundo real como lo es la industria electrónica, del papel, textil, entre otros.
Este problema de programación ha sido catalogado como NP-hard [3], incluso en el caso más simple donde existen dos centros de trabajo y dos máquinas idénticas en paralelo en cada centro. En este tipo de problemas no se puede obtener una solución óptima en bajos tiempos computacionales, razón por la que han surgido métodos heurísticos y metaheurísticos que pueden encontrar buenas soluciones cercanas al óptimo con un bajo tiempo computacional.
Recursos
-
Formatopdf
-
Idioma:español
-
Tamaño:433 kb