Ability of engineering undergraduates to solve real function limit problems
Capacidad de los estudiantes universitarios de ingeniería para resolver problemas de límites de funciones reales
Este estudio se enfoca en analizar las habilidades matemáticas de estudiantes de tres programas de ingeniería en una universidad pública. Los objetivos incluyen investigar las habilidades de los estudiantes en la resolución de problemas matemáticos, clasificándolos según su naturaleza (rutinarios y no rutinarios) y su contexto (real, realista, fantasista y puramente matemático). También se busca identificar y caracterizar los tipos de problemas abordados, así como obtener la opinión de los estudiantes sobre la dificultad de los problemas relacionados con el límite de funciones reales y el conocimiento previo necesario para resolverlos. Los resultados muestran que los estudiantes tienen un buen desempeño en la resolución de problemas rutinarios en contextos fantasistas. Además, demuestran habilidades matemáticas necesarias para abordar problemas no rutinarios relacionados con el límite de funciones reales. Estos hallazgos sugieren que los estudiantes están desarrollando las habilidades matemáticas necesarias para enfrentar problemas desafiantes en aplicaciones del límite de funciones reales, lo que es fundamental para su formación como ingenieros en el contexto actual de la sociedad.
INTRODUCCIÓN
En contextos académicos del área de las matemáticas, se ha demostrado que existe una desarticulación generalizada entre el cálculo del límite y la comprensión de su significado debido a su complejidad y abstracción. Asimismo, hay que agregar que resolver correctamente problemas relacionados con el cálculo del límite de una función no garantiza su comprensión. En muchos casos, se enseña a los estudiantes a resolver problemas relacionados con el cálculo de límites de forma más o menos mecánica 1 - 2 . Por lo tanto, necesitan orientación para lograrlos y alcanzar una comprensión satisfactoria del concepto.
La resolución de problemas hará que los estudiantes de ingeniería vean la necesidad de fortalecer sus conocimientos para enfrentar desafíos cada vez más complejos. Resolver problemas en cualquier nivel de matemáticas o materias técnicas requiere habilidades creativas que a menudo deben surgir. Es imperativo corregir la estructuración de sus conocimientos en los niveles conceptual, reflexivo y práctico 3 - 4 .
Comprender el concepto de límites es fundamental en las clases universitarias de cálculo diferencial ( 5 . El límite del objeto matemático es el primer obstáculo importante para los estudiantes de ingeniería en el aprendizaje de matemáticas universitarias de nivel superior. Los investigadores han descubierto que los estudiantes tienen tres dificultades principales para comprender los límites: el infinito procesos de límites, la definición formal de límites y el valor de los límites 6 - 14. Los hallazgos de (8-9, 11-12) y 15 indican que los estudiantes utilizan razonamiento metafórico incorrecto para comprender los límites, lo que finalmente se convierte en dificultades para entender los límites. resolver tanto ejercicios como problemas de aplicación. Los resultados de la investigación de la referencia 16 sugieren que, al final de sus cursos de matemáticas, muchos estudiantes de ingeniería no consideran el uso de una definición formal de límite para resolver problemas matemáticos basados en límites. A pesar de su importancia, es difícil para los estudiantes comprender el concepto 17 - 18 .
Recursos
-
Formatopdf
-
Idioma:inglés
-
Tamaño:447 kb