Two-Dimensional Meshless Solution of the Non-Linear Convection-Diffusion-Reaction Equation by the Local Hermitian Interpolation Method
Solución bidimensional sin malla de la ecuación no lineal de convección-difusión-reacción mediante el método de Interpolación Local Hermítica
Un método sin malla es desarrollado para solucionar una versión genérica dela ecuación no lineal de convección-difusión-reacción en dominios bidimensionales. El método de Interpolación Local Hermítica (LHI) es empleado para la discretización espacial, y diferentes estrategias son implementadas para solucionar el sistema de ecuaciones no lineales resultante, entre estas iteración de Picard, método de Newton-Raphson y el Método de Homotopía truncado(HAM). En el método LHI las Funciones de Base Radial (RBFs) son empleadas para construir una función de interpolación. A diferencia del Método de Kansa, el LHI es aplicado localmente y los operadores diferenciales de las condiciones de frontera y la ecuación gobernante son utilizados para construirla función de interpolación, obteniéndose una matriz de colocación simétrica. El método de Newton-Rapshon se implementa con matriz Jacobiana analítica y numérica, y las derivadas de la ecuación gobernante con respecto al parámetro de homotopía son obtenidas analíticamente. El esquema numérico es verificado mediante la comparación de resultados con las soluciones analíticas de las ecuaciones de Burgers en una dimensión y Richards en dos dimensiones. Similares resultados son obtenidos para todos los solucionadores que se probaron, pero mejores ratas de convergencia son logradas con el método de Newton-Raphson en doble iteración.
1 INTRODUCCIÓN
Las funciones de base radial (RBF) han sido ampliamente utilizadas en la interpolación global y continua de conjuntos de datos dispersos. Además, la colocación de las RBF mediante el uso de las funciones Multiquadric (MQ), Thin Plate Spline (TPS) e Inverse Multiquadric (IMQ) fue considerada como una de las mejores técnicas numéricas para la interpolación multidimensional, en términos de precisión y facilidad de implementación, entre varios esquemas probados por Franke [1]. Es justo mencionar, que las funciones TPS son interpolantes óptimos 2 ya que minimizan el funcional ∫Rn ∂2f(x⃗)∂xi∂xj∂2f(x⃗)∂xi∂xjdx⃗frac{∂^2f(vec{x})}{∂x_i∂x_j} frac{∂^2f(vec{x})}{∂x_i∂x_j} d vec{x}∂xi∂xj∂2f(x)∂xi∂xj∂2f(x)dx para i = 1, . . . , n y j = 1, . . . , n. Recientemente, los RBFs han sido empleados como la base de los enfoques de colocación sin malla para la solución de ecuaciones diferenciales parciales (EDP). El uso de la técnica de interpolación RBF se ha convertido en la base de los métodos de colocación sin malla RBF para la solución de las EDP, desde el trabajo pionero en el método Unsymmetric de Kansa [2]. Kansa utiliza la función MQ para obtener una solución precisa sin malla de las ecuaciones de advección-difusión y de Poisson sin emplear ningún tratamiento especial para el término de advección (upwinding), debido al alto orden del esquema resultante y a la relación intrínseca entre las ecuaciones gobernantes y la interpolación.
Recursos
-
Formatopdf
-
Idioma:inglés
-
Tamaño:764 kb