Modelo de maximización de la entropía y costos generalizados intervalares para la distribución de viajes urbanos
Maximization Model of entropy and generalized costs for urban travel distribution
En este trabajo se propone la formulación de un modelo de distribución de viajes urbanos doblemente acotado en origen y destino basado en la maximización de la entropía y minimización de los costos generalizados de viajes, relajando la condición de que dichos costos son un parámetro, extendiendo la formulación bajo el supuesto que son variables difusas con función de pertenencia intervalar. Adicionalmente, se obtiene la formulación de optimización multi-objetivo equivalente al problema original y se presenta una propuesta de uso del modelo en predicciones. Se desarrolla un ejemplo numérico para explicar la teoría desarrollada.
1. INTRODUCCIÓN
En muchos problemas prácticos asociados con la solución de un modelo de optimización matemática como soporte para la toma de decisiones, no se puede considerar el conjunto de parámetros o datos como completamente conocido o determinado, debido a que en diversas aplicaciones dichos datos varían en forma significativa por medio de la experimentación y análisis, o simplemente de acuerdo con la experiencia del tomador de decisiones. Un ejemplo de esto son los costos generalizados de transporte asociados con un viaje entre dos zonas de un sistema urbano, que incluyen los costos asociados con la valoración del tiempo de espera, de acceso y de viaje de cada modo, con la inclusión de la tarifa entre dos zonas de una ciudad (Ortúzar y Willumsen, 2008), que pueden variar de acuerdo con el tipo de viaje, con la persona que realiza el viaje o el horario. Es más, pueden existir variaciones temporales de acuerdo con los cambios en factores exógenos a los individuos, como la frecuencia de los buses, la congestión, el clima, etc.
Para encontrar solución a este tipo de problemas y generar resultados más robustos en diversas áreas de ingeniería y ciencias, se han utilizado varios métodos y técnicas matemáticas y estadísticas. Dentro de los más conocidos se encuentran la optimización estocástica o probabilística, donde se supone que el conjunto de parámetros son aleatorios, pero se tienen distribuciones de probabilidad asociadas. Por otro lado, se tiene la optimización difusa, donde la imprecisión de los datos se puede representar por medio de un grado de pertenencia difusa a un conjunto, ya que los objetos de estudio pueden pertenecer a varias clases (Cadenas y Verdegay, 1999).
Este trabajo se basa en la teoría de los modelos de distribución de viajes urbanos o de un sistema interconectado, donde se supondrá que los costos generalizados tienen como parámetro un intervalo de pertenencia asociado con las posibles variaciones de estos valores, lo que permite generar un análisis de sensibilidad a priori de la solución del modelo e incluye robustez en las soluciones factibles.
Recursos
-
Formatopdf
-
Idioma:español
-
Tamaño:4294 kb