Phase analysis of fume during arc weld brazing of steel sheets with protective coatings
Análisis de fase de humos durante la soldadura al arco de chapas de acero con revestimientos protectores
El artículo presenta los resultados de la investigación de la identificación de fases y del análisis cuantitativo de fases de los humos generados durante la soldadura fuerte por Transferencia de Metal en Frío (CMT), ColdArc y Gas Inerte Metálico / Gas Activo Metálico (MIG / MAG). Las investigaciones se realizaron para chapas de acero revestidas por inmersión en caliente con revestimientos de aleación de zinc (Zn) y zinc-hierro (Zn - Fe). Los gases de protección del arco aplicados durante las pruebas relacionadas con la investigación fueron mezclas de gases Ar + O2, Ar + CO2, Ar + H2 y Ar + CO2 + H2. El análisis de los resultados abarca la influencia de la composición química del gas de protección en la composición química del humo de soldadura.
INTRODUCCIÓN
El tipo de acero AISI 4135 representa un buen equilibrio entre diferentes propiedades como resistencia, tenacidad, fatiga y resistencia a la corrosión en condiciones extremas de trabajo, por lo que se utiliza para una gran variedad de aplicaciones industriales y de construcción, tales como, piezas forjadas, chapas laminadas, grúas, turbinas eólicas, equipos de minería y también para la producción de cilindros de acero de alta presión (HPSC) y recipientes, incluyendo el transporte y almacenamiento de gas natural comprimido (GNC), etc. [1-4]. En el AISI 4135 se utilizan a menudo variaciones de microaleación por Nb, V, Ti, B y N [5, 6]. La pureza del acero, las temperaturas de deformación, la velocidad de deformación, el tratamiento térmico (HT) elegido y los procesos de enfriamiento (CP) influyen en la microestructura final y en las propiedades mecánicas. Nűrnberger [2, 3] confirmó la importante influencia de la velocidad de enfriamiento y el nivel de deformación en la microestructura final, aunque sin tener en cuenta el proceso de enfriamiento acelerado (ACC). En [7] los autores mostraron la respuesta de ciclo de vida bajo del acero 42CrMo4 después de la normalización y después del revenido relacionada con el cambio del módulo de elasticidad. Chen [8] detectó en el acero AISI 4135 grietas de temple causadas por un enfriamiento superficial desigual. Moli-Sanches [9] atribuyó una mayor movilidad del hidrógeno en el AISI 4135 tratado a 680 °C que a 540 °C a una mayor densidad de dislocaciones y al atrapamiento de hidrógeno.
En la actualidad, el desarrollo de un acero similar al AISI 4135, el 42CrMo4, tiene como objetivo conseguir la máxima resistencia al mismo tiempo que una gran tenacidad y una resistencia a la corrosión favorable en un entorno ácido [4]. Este es también el objetivo del presente artículo.
Recursos
-
Formatopdf
-
Idioma:inglés
-
Tamaño:232 kb