Molecular and metabolic insights of creatine supplementation on resistance training
Perspectivas moleculares y metabólicas de la suplementación con creatina en el entrenamiento de fuerza
En los últimos años el problema de investigación en el campo de la suplementación deportiva ha cambiado al punto de explicar los mecanismos metabólicos por los cuales la administración de creatina (Cr) incrementa el rendimiento en ciertos deportes o simplemente beneficia la adaptación muscular. Esta revisión analiza por primera vez los mecanismos bioquímicos de la ingesta de Cr desde la perspectiva de señalización celular, enfocándose en la mayor biodisponibilidad energética de Cr y optimización de la acción buffer espacial/temporal que ofrece el sistema Cr/PCr/CK. Además, se examinan aspectos relacionados con el incremento en los procesos de proliferación y diferenciación de células musculares (IGF-I/PI3K/Akt-PKB, SPHK1/MAPK/p38/MRFs, mTOR, hinchamiento celular, actividad mitótica de células satélite, polimerización de actina y fusión de mioblastos) y la inactivación y/o reducción en la expresión de proteínas con funciones ergolíticas (GSK3β, miostatina y regulación de AMPK). De esta manera, se explican el aumento de la masa muscular, la fuerza, la resistencia a la fatiga y el rendimiento en ejercicios de alta intensidad, producidos por la suplementación con monohidrato de Cr, desde un punto de vista metabólico.
Introducción
La creatina (Cr) fue descubierta en 1832 por el científico francés Michel Eugene Chevreul, quien extrajo de la carne un nuevo constituyente orgánico y lo denominó creatina, del griego κρέας = carne de kreas (1). La Cr o N-(aminoiminometil)-N-metilglicina (CAS 57-00-1, 2006) es un metabolito con una dimensión molecular similar a la de un aminoácido (2) que se sintetiza principalmente en el hígado, el riñón y el páncreas (3). La síntesis endógena de Cr comienza con la transferencia del grupo amidino de la arginina al grupo amino de la glicina por parte de la L-Arginina-Glicina amidinotransferasa (AGAT - EC 2.1.4.1) dando lugar a L-ornitina y guanidinoacetato (3). A continuación, el guanidinoacetato se metila en el nitrógeno original de la glicina utilizando la S-adenosilmetionina como donante del grupo metilo. Esta reacción produce Cr y S-adenosilhomocisteína y es catalizada por la guanidinoacetato N-metiltransferasa (GAMT - EC 2.1.1.2) (Figura 1) (4, 5).
Este documento es un artículo preparado por Diego A. Bonilla, Yurany Moreno, quienes pertenecen al Department of Biochemistry and Molecular Biology, Universidad Distrital Francisco José de Caldas, Bogotá. Artículo publicado en la Revista Colombiana de Química (RCQ), la cual es una publicación científica arbitrada del Departamento de Química, Facultad de Ciencias de la Universidad Nacional de Colombia, sede Bogotá. Desde su lanzamiento en 1971 y hasta 1980, la Revista Colombiana de Química publicó un volumen por año y su periodicidad cambió a uno o dos volúmenes por año desde 1981 hasta 2006. A partir de 2007 y hasta la fecha publica tres volúmenes por año. Correo de contacto: [email protected].
En: Revista Colombiana de Química
Recursos
-
Formatopdf
-
Idioma:inglés
-
Tamaño:1609 kb