Some interactions between Hopf Galois extensions and noncommutative rings
Algunas interacciones entre extensiones de Hopf Galois y anillos no conmutativos
En este trabajo, nuestros objetos de interés son las extensiones de Hopf Galois (por ejemplo, álgebras de Hopf, extensiones de campos de Galois, álgebras fuertemente graduadas, productos cruzados, haces principales, etc.) y las familias de anillos no conmutativos (por ejemplo, anillos de polinomios sesgados, extensiones PBW y extensiones PBW sesgadas, etc.) Recogemos y sistematizamos cuestiones, problemas, propiedades y avances recientes en ambas teorías mediante el desarrollo explícito de ejemplos y la realización de cálculos que suelen omitirse en la literatura. En particular, para las extensiones de Hopf Galois consideramos aproximaciones desde el punto de vista de los torsores cuánticos (también conocidos como montones cuánticos) y de los sistemas de Hopf Galois, mientras que para algunas familias de anillos no conmutativos presentamos avances en la caracterización de propiedades anular-teóricas y homológicas. Cada tema desarrollado se ejemplifica con abundantes referencias a trabajos clásicos y actuales, por lo que este trabajo sirve de repaso para los interesados en cualquiera de las dos teorías. A lo largo de todo el trabajo se presentan interacciones entre ambas.
INTRODUCCIÓN
En el último medio siglo, las álgebras de Hopf han resultado ser una gran herramienta para estudiar un gran número de problemas en diversos contextos: desde proporcionar soluciones para la ecuación de Yang-Baxter y describir los llamados grupos cuánticos -que aparecen en física teórica y teoría algebraica-, hasta generalizar la teoría de Galois. Es precisamente este último caso el que nos ocupa en este trabajo.